Differentiation of a finite element solver for stationary Navier-Stokes

René Schneider1 \quad Peter Jimack2 \quad Andrea Walther3

1Mathematik in Industrie und Technik
Fakultät für Mathematik
TU Chemnitz

2School of Computing
University of Leeds

3Institut für Mathematik
Universität Paderborn

4. June 2010
1. Motivation
2. Structure of the FE solver
3. Differentiation/Adjoint by hand
4. AD at different abstraction levels
5. Conclusions
We are interested in optimisation problems where the performance function I is a functional of the solution of a PDE and the design variables influence the geometric shape of the PDE domain.

\[\Rightarrow \text{shape optimisation} \]

Numerical methods for the PDE lead to very large systems of equations whose solution is expensive.

\[\Rightarrow \text{Efficient methods are mandatory.} \]

\[\Rightarrow \text{Gradient based optimisation algorithms.} \]

Here special case of shape optimisation for stationary Navier-Stokes.
Motivation example 1: Shape optimisation \((Re = 10)\)

Optimisation result

\[
\begin{align*}
 f_0 &= 1.4056 \\
 f_* &= 1.3714
\end{align*}
\]

Optimisation movie

\[
\begin{align*}
 f_0 &= 1.4056 \\
 f_* &= 1.3714
\end{align*}
\]
Motivation example 2: mesh optimisation ($\varepsilon = 10^{-3}$)

initial and optimised coarse mesh
Introduction to FEINS

- Name FEINS
 - originally “Finite Elements for Incompressible Navier-Stokes”
 - grown to general purpose FEM-library + collection of solvers
- primary interest: shape optimisation
- written entirely in C, currently \(\approx 43,329\) lines of code
- free software, GPL-license
- only 2D, but 3D extension prepared
- triangular elements \((P_1, P_2)\), extensions prepared
- modern (optimal) solvers, based on iterative solvers and multigrid preconditioning
- adaptive discretisation
FEINS: Equations

(only stationary problems)

- Poisson-equation:
 - as testbed for components for other problems
 - PCG solver with BPX or multigrid preconditioning
 - no shape gradient available

- Lamé-equations (linear elasticity):
 - PCG solver with BPX or multigrid preconditioning
 - shape gradient available
 - adaptivity

- incompressible Navier-Stokes equations (fluid dynamics):
 - linearisation with Newton’s methods or Picard iteration
 - GMRES-solver with F_p preconditioner (Schur complement preconditioner)
 - Taylor-Hood elements (inf − sup stable)
 - shape gradient available
FEINS: Efficient solvers

<table>
<thead>
<tr>
<th>problem</th>
<th># unknowns</th>
<th>time solve (s)</th>
<th>time shape gradient (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lamé</td>
<td>35,419,650</td>
<td>733</td>
<td>*</td>
</tr>
<tr>
<td>Navier-Stokes</td>
<td>37,769,219</td>
<td>31,000</td>
<td>37,000</td>
</tr>
</tbody>
</table>

System: on single core of
- 2x Intel Xeon Dual Core CPU 3.0 GHz
- 64 GB RAM PC2-5300 DDR2-667ECC
- openSUSE Linux 11.1 (x86_64)
FEINS: Navier-Stokes solver outer structure

- read mesh
- refine mesh
- nonlinear solve
 - assemble matrices + residual
 - linear solve, GMRES, preconditioner F_p
 - solve F, GMRES, preconditioner multigrid
 - multiply
 - solve A_p, CG, preconditioner BPX
 - multiply
 - solve M_p, CG, preconditioner Jacobi
 - evaluate performance function
Example problem

FE code FEINS:
- Domain where part of the boundary is defined by Bezier splines.
- Stationary incompressible Navier Stokes equations.
- Various performance functionals.
- Differentiation wrt. to parameters of the Bezier splines (control points).

Here tests for:
- Performance functionals:
 - Energy dissipation in whole domain.
 \[I_1 = \int_{\Omega} \frac{\mu}{2} (\text{grad} \ u + \text{grad} \ u^T) : (\text{grad} \ u + \text{grad} \ u^T) \ d\Omega \]
 - Surface force in x direction, on bottom of cavity.
 \[I_2 = \left[\begin{array}{c} 1 \\ 0 \end{array} \right]^T \left(\int_{\Gamma_b} \left[\mu (\text{grad} \ u + \text{grad} \ u^T) - \frac{2}{3} \mu \nabla \cdot u \right] \cdot n \ d\Gamma - \int_{\Gamma_b} p \cdot n \ d\Gamma \right) \]
Example problem

- Lid driven cavity flow, cavity with curved bottom, 12 Spline parameters
Assumptions:

Number of independent and intermediate variables “large”, but only one dependent variable (result/output).
Consider scalar quantity

\[l(s) = \tilde{l}(u(s), s), \quad \text{where vector } u(s) \text{ defined by} \]
\[0 = R(u(s), s). \tag{1} \]

⇒ require \(\nabla l \)

Consider small perturbation \(\delta s \) in \(s \),

\[\delta l = \frac{\partial \tilde{l}}{\partial u} \delta u + \frac{\partial \tilde{l}}{\partial s} \delta s \]

\[0 = \delta R = \frac{\partial R}{\partial u} \delta u + \frac{\partial R}{\partial s} \delta s. \]

⇒ sensitivity equation

\[\Rightarrow \text{sensitivity equation} \]
Adjoint Technique

\[
\delta l = \left(\frac{\partial l}{\partial u} \delta u + \frac{\partial l}{\partial s} \delta s \right) - \psi^T \left(\frac{\partial R}{\partial u} \delta u + \frac{\partial R}{\partial s} \delta s \right)
\]

\[
= \left(\frac{\partial l}{\partial u} - \psi^T \frac{\partial R}{\partial u} \right) \delta u + \left(\frac{\partial l}{\partial s} - \psi^T \frac{\partial R}{\partial s} \right) \delta s
\]

Thus

\[
\frac{DL}{Ds} = \frac{\partial l}{\partial s} - \psi^T \frac{\partial R}{\partial s}
\]

if

\[
\begin{bmatrix} \frac{\partial R}{\partial u} \end{bmatrix}^T \psi = \left[\frac{\partial l}{\partial u} \right]^T
\]
Example: Discrete Adjoint for FEM

- FEM \Rightarrow linear system

$$K(s)u = b(s) \quad \quad \quad R(u, s) := K(s)u - b(s)$$

- Functional $l := [g(s)]^T u$

- discrete-adjoint equation

$$K(s)^T \psi = g(s)$$

evaluation of the gradient

$$\frac{DI}{Ds} = \frac{\partial l}{\partial s} - \psi^T \frac{\partial R}{\partial s}$$

- Just one additional solve to get whole gradient, independent of $\text{dim}(s)$.
Example for differentiating FE code

- Differentiate performance functional in FEM code wrt. domain geometry

\[K(s)^T \Psi = g(s) \]

solve

then evaluate gradient

\[\frac{DI}{Ds} = \frac{\partial I}{\partial s} - \Psi^T \frac{\partial R}{\partial s} \]

difficulty:
require \(\partial R/\partial s \), \(\partial I/\partial s \), i.e. derivatives of the FE discretisation wrt. node positions
Example for \(\frac{\partial R}{\partial s} \) for FE code

- model problem:

\[
F(s) := \int_{T_\ell} \nabla \varphi_j(x) \cdot \nabla \varphi_i(x) \, d\Omega
\]

- unstructured mesh, isoparametric elements
- (2) is calculated by quadrature-formula on reference element
Example for $\partial R/\partial s$ for FE code (2)

$$F(s) = \sum_{k=1}^{m} \nabla_T \varphi_j(M(\hat{x}_k)) \cdot \nabla_T \varphi_i(M(\hat{x}_k)) | \det(J(\hat{x}_k))| w_k$$

$$x = M(\hat{x}) = \sum_i s_i \hat{\varphi}_i(\hat{x})$$

$$J := \left[\frac{\partial x}{\partial \hat{x}} \right] = \sum_i s_i \left[\hat{\nabla} \hat{\varphi}_i(\hat{x}) \right]^T$$

$$\varphi(x) = \hat{\varphi}(M^{-1}(x))$$

$$\nabla_T \varphi_i(M(\hat{x}_k)) = J^{-1} \hat{\nabla} \hat{\varphi}_i(\hat{x}_k)$$

⇒ if derivatives of highlighted terms are calculated, only have to use product rule for rest
Example for $\partial R/\partial s$ for FE code (3)

Proposition 1

\[
\frac{\partial [\nabla_T \varphi(i)]_u}{\partial [s_k]_t} = - \left[\nabla_T \psi(k) \right]_u \left[\nabla_T \varphi(i) \right]_t \\
\frac{\partial |\det(J_T)|}{\partial s_{gT}(k)} = |\det(J_T)| J_T^{-T} \hat{\nabla} \hat{\psi}(k)(\hat{x}_\ell).
\]

Proof:

[S. PhD Thesis], [S./Jimack 2008]

- first part:
 implicit function theorem, re-organising terms
- second part:
 utilise adjoint representation of inverse of J_T
History and Background

- Wanted to apply discrete adjoint technique for shape optimisation in CFD
 - s are node positions in FE mesh
 - \Rightarrow differentiate wrt. to these
- in 2003 started to implement FEM flow solver FEINS as testbed
- adjoint requires $\partial R/\partial u$, $\partial I/\partial u$, $\partial R/\partial s$, $\partial I/\partial s$
- $\partial R/\partial u$, $\partial I/\partial u$ simple
- $\partial R/\partial s$ and $\partial I/\partial s$ more tricky,
 - \Rightarrow tried to use AD (ADIC, ADOL-C)
- spent two weeks with little success
- used differentiation by hand
 - [S. PhD Thesis], [S./Jimack 2008]
- Referee not happy about our opinion of AD.
 - \Rightarrow reconsidered
Applying ADOL-C to FEINS

[Tijskens et. al. 2002]
Level at which applied

- Full code.
- Routines for $I(u, s)$ and $(\Psi^T R(u, s))$.
- Element level of $I(u, s)$ and $R(u, s)$.
What we had to change

- Started out with hand differentiated code:
 - ≈ 3130 out of ≈ 40943 lines of code dedicated to $I(u, s)$ and the derivatives of $R(., .)$ and $I(., .)$.

- For ADOL-C on full code:
 - g++ instead of gcc compiler.
 - Dropped mesh generator triangle. (Definitely lost.)
 - Dropped all used LAPACK and BLAS routines.
 - No direct coarse grid solvers for multigrid.
 - Changed ≈ 4240 out of ≈ 40943 lines of code.

- For ADOL-C on individual routines:
 - g++ instead of gcc compiler.
 - Dropped mesh generator triangle. (May be possible again.)
 - Changed ≈ 1859 out of ≈ 40943 lines of code.

- For ADOL-C on element level:
 - same restrictions as for “on individual routines”
 - Changed ≈ 2082 out of ≈ 40943 lines of code.
Results

![Graph showing the relationship between time (s) and #DOFs for different methods: hand-tsolve, hand-tadj, AD-elem-tsolve, AD-elem-tadj, AD-func-tsolve, AD-func-tadj, AD-full-tsolve, and AD-full-tadj. The graph demonstrates the scalability of these methods as the number of DOFs increases.](image-url)
Results

![Graph showing the comparison of time (s) vs. #DOFs for different differentiation methods.]

- Red line with crosses: hand-t-dI
- Red square: hand-t-dR
- Grey plus: AD-elem-t-dI
- Grey square: AD-elem-t-dR
- Blue square: AD-func-t-dI
- Blue plus: AD-func-t-dR

The graph indicates that the time required increases as the number of degrees of freedom (#DOFs) increases, with the automatic differentiation methods (AD) generally showing improved performance compared to the hand-differentiation (hand-t) methods.
Results

Tape Size in MByte

<table>
<thead>
<tr>
<th># DOFs</th>
<th>AD-full</th>
<th>AD-function</th>
<th>AD-element</th>
<th>hand-coded</th>
</tr>
</thead>
<tbody>
<tr>
<td>659</td>
<td>3,259</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,467</td>
<td>13,562</td>
<td>53</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9,539</td>
<td>34,898</td>
<td>212</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37,507</td>
<td>849</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>148,739</td>
<td>3,396</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>592,387</td>
<td>13,586</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2,364,419</td>
<td>39,531</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9,447,427</td>
<td>34,237</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>37,769,219</td>
<td>88,538</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- biggest single file 64GByte
- bug or restriction in ADOL-C or in Linux?
Results

<table>
<thead>
<tr>
<th>criteria (659 DOFs)</th>
<th>hand-coded/AD-function</th>
<th>AD-full</th>
</tr>
</thead>
<tbody>
<tr>
<td>+9.4737171891857397e-01</td>
<td>+9.4737171819690480e-01</td>
<td></td>
</tr>
<tr>
<td>-3.2834420199797765e-02</td>
<td>-3.2834420248391054e-02</td>
<td></td>
</tr>
</tbody>
</table>
Results

grad (659 DOFs)

<table>
<thead>
<tr>
<th>para</th>
<th>relative error to hand-coded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AD-function</td>
</tr>
<tr>
<td>1</td>
<td>2.8e-12</td>
</tr>
<tr>
<td>2</td>
<td>1.2e-12</td>
</tr>
<tr>
<td>3</td>
<td>6.2e-12</td>
</tr>
<tr>
<td>4</td>
<td>5.8e-13</td>
</tr>
<tr>
<td>5</td>
<td>1.6e-12</td>
</tr>
<tr>
<td>6</td>
<td>1.0e-12</td>
</tr>
<tr>
<td>7</td>
<td>3.4e-12</td>
</tr>
<tr>
<td>8</td>
<td>5.4e-13</td>
</tr>
<tr>
<td>9</td>
<td>4.5e-12</td>
</tr>
<tr>
<td>10</td>
<td>3.5e-12</td>
</tr>
<tr>
<td>11</td>
<td>6.5e-13</td>
</tr>
<tr>
<td>12</td>
<td>1.2e-12</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th>DOFs</th>
<th>l_1</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>659</td>
<td>+9.47371719e-01</td>
<td>-3.28344202e-02</td>
</tr>
<tr>
<td>2,467</td>
<td>+1.23049527e+00</td>
<td>-3.34322002e-02</td>
</tr>
<tr>
<td>9,539</td>
<td>+1.52044541e+00</td>
<td>-3.37011495e-02</td>
</tr>
<tr>
<td>37,507</td>
<td>+1.81382551e+00</td>
<td>-3.38392446e-02</td>
</tr>
<tr>
<td>148,739</td>
<td>+1.66728516e+00</td>
<td>-3.37266467e-02</td>
</tr>
<tr>
<td>592,387</td>
<td>+1.66437167e+00</td>
<td>-3.37215419e-02</td>
</tr>
<tr>
<td>2,364,419</td>
<td>+1.66350100e+00</td>
<td>-3.37199409e-02</td>
</tr>
<tr>
<td>9,447,427</td>
<td>+1.66327072e+00</td>
<td>-3.37193837e-02</td>
</tr>
<tr>
<td>37,769,219</td>
<td>+1.66321284e+00</td>
<td>-3.37191661e-02</td>
</tr>
</tbody>
</table>
Results

<table>
<thead>
<tr>
<th># DOFs</th>
<th>l_1</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>659</td>
<td>-7.2e-01</td>
<td>+8.8e-04</td>
</tr>
<tr>
<td>2,467</td>
<td>-4.3e-01</td>
<td>+2.9e-04</td>
</tr>
<tr>
<td>9,539</td>
<td>-1.4e-01</td>
<td>+1.8e-05</td>
</tr>
<tr>
<td>37,507</td>
<td>+1.5e-01</td>
<td>-1.2e-04</td>
</tr>
<tr>
<td>148,739</td>
<td>+4.1e-03</td>
<td>-7.5e-06</td>
</tr>
<tr>
<td>592,387</td>
<td>+1.2e-03</td>
<td>-2.4e-06</td>
</tr>
<tr>
<td>2,364,419</td>
<td>+2.9e-04</td>
<td>-7.7e-07</td>
</tr>
<tr>
<td>9,447,427</td>
<td>+5.8e-05</td>
<td>-2.2e-07</td>
</tr>
<tr>
<td>37,769,219</td>
<td>+0.0e+00</td>
<td>+0.0e+00</td>
</tr>
</tbody>
</table>
Results

gradient convergence (hand-coded), abs-error

<table>
<thead>
<tr>
<th># DOFs</th>
<th>l_1</th>
<th>l_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>659</td>
<td>+2.8e-02</td>
<td>+2.2e-02</td>
</tr>
<tr>
<td>2,467</td>
<td>+1.9e-02</td>
<td>+1.2e-02</td>
</tr>
<tr>
<td>9,539</td>
<td>+1.4e-02</td>
<td>+4.0e-03</td>
</tr>
<tr>
<td>37,507</td>
<td>+1.0e-02</td>
<td>+1.3e-03</td>
</tr>
<tr>
<td>148,739</td>
<td>+6.4e-04</td>
<td>+3.1e-04</td>
</tr>
<tr>
<td>592,387</td>
<td>+2.0e-04</td>
<td>+4.9e-04</td>
</tr>
<tr>
<td>2,364,419</td>
<td>+5.7e-05</td>
<td>+5.8e-04</td>
</tr>
<tr>
<td>9,447,427</td>
<td>+1.2e-05</td>
<td>+1.3e-04</td>
</tr>
<tr>
<td>37,769,219</td>
<td>+0.0e+00</td>
<td>+0.0e+00</td>
</tr>
</tbody>
</table>

⇒ good news:

gradient converges with same order as $l(u)$.

Differentiation of a finite element solver for stationary Navier-Stokes
Andrea suggested there might be problems differentiating Krylov subspace solvers (GMRES, CG).

Tested this with example problem $Ax = b$:

$$
\begin{bmatrix}
2 & -1 \\
-1 & 2 & -1 \\
& & \\
& & \\
& & \\
-1 & 2 & -1 \\
& & \\
-1 & 2
\end{bmatrix}
\begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{n-1} \\
x_n
\end{bmatrix}
=
\begin{bmatrix}
1 \\
1 \\
\vdots \\
1 \\
1
\end{bmatrix}
$$

System is solved with GMRES

differentiate solution x_1 wrt. the nonzero entries of A
Differentiating GMRES

Results for $n = 20$

<table>
<thead>
<tr>
<th>i</th>
<th>j</th>
<th>∇_{exact}</th>
<th>∇_{AD}</th>
<th>difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>-9.524e+00</td>
<td>-9.500e+00</td>
<td>2.4e-02</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>-1.810e+01</td>
<td>-1.800e+01</td>
<td>9.5e-02</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>-1.719e+01</td>
<td>-1.700e+01</td>
<td>1.9e-01</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>-9.048e+00</td>
<td>-9.000e+00</td>
<td>4.8e-02</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>-3.143e+01</td>
<td>-2.800e+01</td>
<td>3.4e+00</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>-2.881e+01</td>
<td>-2.750e+01</td>
<td>1.3e+00</td>
</tr>
<tr>
<td>10</td>
<td>9</td>
<td>-2.829e+01</td>
<td>-2.700e+01</td>
<td>1.3e+00</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>-9.524e-01</td>
<td>-1.000e+00</td>
<td>-4.8e-02</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>-4.762e-01</td>
<td>-5.000e-01</td>
<td>-2.4e-02</td>
</tr>
</tbody>
</table>
Algorithmic Differentiation with ADOL-C is valuable alternative to hand-coded derivatives, if applied at right level of code.

“Automatic” is relative.

Tape sizes appear to be one major problem with ADOL-C applied to this type of problem.

AD not simple to apply to external libraries (LAPACK, BLAS, triangle).

AD coded derivatives are significantly slower than (non-optimised) hand coded ones, but overhead small compared to the scale of the PDE code.

It would be nice to compare with a source transformation tool.
Thank you!